語言教學者
自學&親子

Tensorflow接班王者:Google JAX深度學習又快又強大

Tensorflow接班王者:Google JAX深度學習又快又強大

$780

ISBN:9786267146897
作者:王曉華
出版日期:2023/01/18
尺寸:230x170x0mm

庫存=0
運送方式:

下單後立即採購,需5-7個工作天。

▶▶▶ 從深度學習的基礎知識到案例,快速掌握JAX深度學習框架!


本書為繁體版第一本的JAX全方位指南!JAX是一個用於高性能數值計算的工具,專門為深度學習領域所設計。本書從基礎概念開始談起,教導讀者在Windows環境下架設WSL,以方便使用GPU,而不需要全新從Linux安裝,接著開始介紹一些機器學習和深度學習的理論。從第四章開始,便是JAX的正式介紹,包括了XLA、自動微分等,以及談到JAX和Numpy之間的關聯,並且有實際的程式說明。

到第六章開始,便陸續介紹JAX的開發細節,然後正式使用JAX進行深度學習的程式應用,包括CNN中的VGG模型,或是將JAX和TF結合,運用兩者間的搭配來解決大部分的問題。待前面的基礎都已經完備後,便引導你來放手使用JAX撰寫自訂函數,以及帶讀者使用JAX的高級套件,如experimental和nn。最後則是進階CNN的開發,使用ResNet來完成CIFAR100的分類、用JAX解決NLP的問題,以及進一步使用JAX來實作GAN網路。

不管你先前是TF或PyTorch的使用者,當你發現JAX的程式碼行數是TF的1/10,PyTorch的1/3,速度更快,且程式碼更容易理解,更加Pythnoic,你真的可以開心地踏入JAX的深度學習世界!

【本書看點】
✪ 從零開始學JAX
✪ 把numpy放入TPU和GPU的數值套件
✪ JAX如何實作XLA
✪ 使用JAX實作CNN
✪ 用JAX自訂函數
✪ JAX實作ResNet CIFAR100資料集分類
✪ 用JAX實作自然語言處理的Word Embedding
✪ 用JAX實作GAN生成對抗網路

【適合讀者】
☛ 人工智慧入門讀者。
☛ 深度學習入門讀者。
☛ 機器學習入門讀者。
☛ 大專院校人工智慧專業的師生。
☛ 專業教育訓練機構的師生。
☛ 其他對智慧化、自動化感興趣的開發者。

※ 本書附程式碼,可至深智官網下載:deepmind.com.tw/

王曉華

計算機專業講師,研究方向為雲計算、大數據與人工智能。著有《Spark 3.0大數據分析與挖掘:基於機器學習》、《TensorFlow深度學習應用實踐》、《OpenCV+TensorFlow深度學習與計算機視覺實戰》、《TensorFlow知識圖譜實戰》、《TensorFlow人臉識別實戰》、《TensorFlow語音識別實戰》、《TensorFlow 2.0卷積神經網路實戰》、《Keras實戰:基於TensorFlow2.2的深度學習實踐》、《TensorFlow深度學習從零開始學》、《深度學習的數學原理與實現》等圖書。

Tensorflow接班王者:Google JAX深度學習又快又強大

$780
瀏覽紀錄
瀏覽紀錄