語言教學者
自學&親子

機器學習模擬應用:將合成資料運用於AI

機器學習模擬應用:將合成資料運用於AI

$680

ISBN:9786263244368
譯者:楊新章
出版社:歐萊禮
出版日期:2023/03/08
尺寸:230x190x0mm

庫存=0
運送方式:

下單後立即採購,需5-7個工作天。

「在資料需求很高但可存取資料稀少的時代,建立逼真的模擬環境以產生更強大的研究和ML應用程式將比以往任何時候都更加重要。本書對於機器學習和Unity開發人員來說是進入該領域的最佳途徑。」 —Dominic Monn 機器學習工程師

模擬和合成將是人工智慧和機器學習的未來核心。想像一下,程式設計師、資料科學家和機器學習工程師可以在沒有汽車的情況下建立自動駕駛汽車的大腦。您可以使用模擬來合成人工資料訓練傳統的機器學習模型,而不是使用實際的資訊。這只是開始而已。

透過這本實用的書,您將探索基於模擬和合成的機器學習和AI的可能性,重點是深度強化學習和模仿學習技術。AI和ML是藉由資料來驅動,而模擬是釋放它們全部潛力的強大且引人入勝的方式。

您將學習如何:
‧使用Unity引擎的模擬來設計解決ML和AI問題的方法
‧使用遊戲引擎合成影像以用作訓練資料
‧建立用來訓練深度強化學習和模仿學習模型的模擬環境
‧為基於模擬的ML來使用和應用有效率的通用演算法,例如近端策略優化
‧使用不同的方法來訓練各種ML模型
‧使用PyTorch和Unity ML-Agents和Perception Toolkits來讓ML工具能夠與業界標準的遊戲開發工具一起使用

Paris Buttfield-Addison

是遊戲設計師、電腦研究員、法律書呆子和遊戲開發工作室Secret Lab聯合創辦人。

Mars Buttfield-Addison

是塔斯馬尼亞大學的計算和機器學習研究員。

Tim Nugent

是一名行動應用程式開發人員、遊戲設計師和計算研究員。

Jon Manning

是Swift、C#和Objective-C方面的軟體工程專家。作為Secret Lab的聯合創辦人,他為遊戲建立了流行的Yarn Spinner對話框架。

機器學習模擬應用:將合成資料運用於AI

$680
瀏覽紀錄
瀏覽紀錄